2014 Water Quality Report ## NASA Ames Research Center, Moffett Field, California July 2015 #### **OUR WATER QUALITY AND SOURCE** Federal and State law requires that NASA Ames Research Center make this report every year by July 1st for the previous calendar year concerning the sources and quality of the water provided to our customers by our drinking water distribution system. This report contains important information about your drinking water. Translate it, or speak with someone who understands it. For assistance in Spanish contact Armando Jimenez at (650) 604-1523. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para la ayuda en español entre en contacto con a Armando Jimenez en (650) 604-1523. For calendar year 2014 the water provided by the distribution system for NASA Ames Research Center (which includes Moffett Field) was monitored and analyzed by both the supplier and NASA Ames in accordance with Federal and State regulations. This report presents the results of those analyses, with the details shown on the table on the last page. Most of the data in this table is provided to us by our supplier, and the NASA Ames monitoring results are shown in the shaded regions. Our water supplier is the San Francisco Public Utilities Commission (SFPUC). The main source of the water is the Hetch Hetchy reservoir in the Sierra Nevada near Yosemite. There are a few smaller reservoirs that also contribute to this system as well as some ground water from the Sunol Filter Galleries near the town of Sunol. The water is treated at the Sunol Valley Water Treatment Plant which includes disinfection and fluoridation. No local Ames/Moffett groundwater contributes to our drinking water. The SFPUC website is http://sfwater.org. NOTE: The State Drinking Water program has been moved from the California Department of Public Health (CDPH) to the State Water Resources Control Board (SWRCB), Division of Drinking Water (DDW). #### FREQUENTLY ASKED QUESTIONS #### Why is my water yellow or brown? The most common reason for discolored water is the plumbing. When water is not circulated regularly (unused over weekends), it can pick up color from the pipes. Distribution mains can also accumulate small amounts of sediment that settles out. When the Center opens hydrants this sediment can become re-suspended. Let the water run a few minutes to clear the discoloration. #### Why does my water sometimes look cloudy? Tiny air bubbles that can cause cloudy water often originates when water is pumped during distribution. The cloudy appearance should clear when the water is allowed to stand for a few minutes. ### Why tap vs. bottled? On February 28, 2005 the bottled water service was canceled, since our tap water meets Federal and State health standards. Therefore, the Center cannot expend public funds for bottled water. #### What should I consider before buying bottled water? Consider why you are buying bottled water. Many people choose bottled water because of its taste. One of the key taste differences between tap water and bottled water is based on the disinfection method. Tap water can be disinfected with chlorine, chloramine, ozone, or ultraviolet light. Generally, bottlers prefer ozone because it does not leave a taste. Bottled water is not necessarily safer than tap water and costs hundreds of times more than tap water on a per gallon basis. Consumers who choose to purchase bottled water should carefully read its label to understand what they are buying, whether it is a better taste, or a certain method of treatment. Drinking tap water is a sustainable choice. Bottled water manufacturing processes use oil, release carbon dioxide emissions, and use fuel for transportation and delivery. #### U.S. EPA SAFE DRINKING WATER HOTLINE The U.S. EPA's Safe Drinking Water Hotline is referred to in multiple places in this report. It can be reached at (1-800-426-4791) or http://water.epa.gov/drink/hotline/index.cfm #### CONTAMINANTS, HEALTH RISKS Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by consulting the USEPA's Safe Drinking Water Hotline (contact info given above) and http://water.epa.gov/drink/contaminants #### SPECIAL NEEDS Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (contact info given above) and http://www.epa.gov/safewater/consumer/pdf/crypto.pdf #### SOURCES OF WATER AND CONTAMINANTS The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems; radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. #### REGULATORY CONTROLS ON WATER QUALITY In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the California State Water Resources Control Board (SWRCB) Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health. The US Food and Drug Administration (FDA) sets standards for bottled water based on the USEPA's standards. #### **DEFINITIONS** The following terms define the standards for the regulation of contaminants in drinking water that are used by the USEPA and the California SWRCB, many of which are used in the table on the last page of this document. Public Health Goal (PHG) and Maximum Contaminant Level Goal (MCLG) essentially mean the same thing, the first being a California definition and the second a U.S. EPA definition. Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk. PHGs are set by the California Environmental Protection Agency. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA. Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standard (SDWS): MCLs for contaminants that may adversely affect the taste, odor or appearance of drinking water. These are aesthetic considerations that are not considered as health concerns. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. #### LEAD AND COPPER SURVEY During 2014, the 90th percentile values for lead and copper were both below their respective action levels as indicated on the table on the last page of this document. We were approved in 2012 for reduced sampling of lead and copper by the State, so our next survey will not be until September 2017. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The SFPUC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (contact info given on page 2) and http://water.epa.gov/drink/info/lead/index.cfm #### YOUR VIEWS ARE WELCOME If you have any questions, please let us know. Technical staff investigate drinking water complaints. ### REQUIREMENTS The Center ensures that a clean, constant supply of drinking water is provided by testing the water, maintaining the distribution systems, and reporting on the water quality. #### FOR QUESTIONS ABOUT: Water Quality, contact Don Chuck at 604-0237, Donald.M.Chuck@nasa.gov or Chelsea Candelaria at 604-4021, Chelsea.M.Candelaria@nasa.gov Maintenance, contact the Ames Trouble Desk at 604-5212 Health & Safety, contact your representative. ### (Data based on Hetch Hetchy water and effluents from both SVWTP and HTWTP) # NASA Ames Research Center - Water Quality Data for Year 2014 (1) | DETECTED CONTAMINANTS | Unit | MCL | PHG
or (MCLG) | Range or
Level Found | Average
or [Max] | Major Sources in Drinking Water | | | | | |---|--------|---|------------------|-------------------------|-----------------------|---|--|--|--|--| | TURBIDITY | | | | | | | | | | | | Unfiltered Hetch Hetchy Water | NTU | 5 | N/A | 0.2 - 0.6 (2) | [2.8] | Soil runoff | | | | | | Filtered Water from Sunol Valley Water
Treatment Plant (SVWTP) | NTU | 1 ⁽³⁾ | N/A | - | [0.98] | Soil runoff | | | | | | | - | Min 95% of samples ≤ 0.3 NTU ⁽³⁾ | N/A | 97% - 100% | - | Soil runoff | | | | | | Filtered Water from Harry Tracy Water
Treatment Plant (HTWTP) | NTU | 1 ⁽³⁾ | N/A | - | [0.07] | Soil runoff | | | | | | | , | Min 95% of samples ≤ 0.3 NTU ⁽³⁾ | N/A | 100% | 1 | Soil runoff | | | | | | DISINFECTION BYPRODUCTS AND PRECURSOR | | | | | | | | | | | | Total Trihalomethanes | ppb | 80 | N/A | 30 - 73 | [50.5] ⁽⁴⁾ | Byproduct of drinking water disinfection | | | | | | Haloacetic Acids | ppb | 60 | N/A | 4.3 - 34.8 | [32.4] ⁽⁴⁾ | Byproduct of drinking water disinfection | | | | | | Total Organic Carbon ⁽⁵⁾ | ppm | TT | N/A | 1.3 - 2.8 | 1.9 | Various natural and man-made sources | | | | | | MICROBIOLOGICAL | | | | | | | | | | | | Total Coliform ⁽⁶⁾ | - | NoP ≤ 1 of
monthly samples | (0) | ND | [ND] | Naturally present in the environment | | | | | | Giardia lamblia | cyst/L | TT | (0) | <0.01 - 0.04 | < 0.01 | Naturally present in the environment | | | | | | INORGANICS | | | | | | | | | | | | Fluoride (source water) ⁽⁷⁾ | ppm | 2.0 | 1 | ND - 0.8 | 0.4 (8) | Erosion of natural deposits; water additive to promote strong teeth | | | | | | Chloramine (as chlorine) | ppm | MRDL = 4.0 | MRDLG = 4 | 0.00 - 3.0 | [1.4] (9) | Drinking water disinfectant added for treatment | | | | | | | | | | | | 1 | | | | | | CONSTITUENTS WITH SECONDARY STANDARDS | Unit | SMCL | PHG | Range | Average | Major Sources of Contaminant | | | | | | Chloride | ppm | 500 | N/A | <3 - 15 | 9 | Runoff / leaching from natural deposits | | | | | | Odor Threshold | TON | 3 | N/A | ND - 1 | ND | Naturally-occurring organic materials | | | | | | Specific Conductance | μS/cm | 1600 | N/A | 32 - 222 | 151 | Substances that form ions when in water | | | | | | 0.16 | | T 0 0 | l | 0.0.00 | 4.5 | | | | | | | Turbidity | NTU | 5 | N/A | 0.1 - 0.2 | 0.1 | Soil runoff | | |-----------------|------|------|-----|-------------------------|--------------------|--|--| | LEAD AND COPPER | Unit | AL | PHG | Range | 90th
Percentile | Major Sources in Drinking Water | | | Copper | ppb | 1300 | 300 | 12 - 98 ⁽¹⁰⁾ | 59 | Internal corrosion of household water plumbing systems | | | Lead | dqq | 15 | 0.2 | 0 - 13 (11) | 8 | Internal corrosion of household water plumbing systems | | 0.9 - 32 31 - 120 17 81 N/A N/A | OTHER WATER QUALITY PARAMETERS | Unit | ORL | Range | Average | |------------------------------------|------|----------|------------|---------| | Alkalinity (as CaCO ₃) | ppm | N/A | 8 - 94 | 37 | | Bromide ⁽¹²⁾ | ppb | N/A | ND - 27 | 5 | | Calcium (as Ca) | ppm | N/A | 3 - 20 | 11 | | Chlorate ⁽¹³⁾ | ppb | 800 (NL) | 34 - 740 | 314 | | Hardness (as CaCO ₃) | ppm | N/A | 7 - 77 | 46 | | Magnesium | ppm | N/A | <0.2 - 6.4 | 3.9 | | рН | - | N/A | 6.9 - 10.2 | 9.3 | | Potassium | ppm | N/A | 0.2 - 1 | 0.6 | | Silica | ppm | N/A | 2 - 5 | 4 | | Sodium | ppm | N/A | 2.4 - 16 | 10 | ppm ppm ### Footnotes: Sulfate Total Dissolved Solids - (1) Confirmed by NASA Ames Research Center shown in shaded regions. - (2) These are monthly average turbidity values measured every 4 hours daily. - (3) There is no turbidity MCL for filtered water. The limits are based on the TT requirements for filtration systems. - (4) This is the highest locational running annual average value. - (5) Total organic carbon is a precursor for disinfection byproduct formation. The TT requirement applies to the filtered water from the SVWTP only. 500 1000 - $(6) \ \ Since < 40 \ samples \ are \ collected \ per \ month, the \ highest \ number \ (not \ the \ percentage) \ of \ positive \ samples \ collected \ in \ any \ one \ month \ is \ reported.$ - (7) The SWRCB specifies the fluoride level in the treated water be maintained within a range of 0.8 ppm 1.5 ppm. In 2014, the range and average of the fluoride levels were 0.6 ppm 1.2 ppm and 0.9 ppm, respectively. - (8) The natural fluoride level in the Hetch Hetchy supply was ND. Elevated fluoride levels in the SVWTP and HTWTP raw water are attributed to the transfer of fluoridated Hetch Hetchy water into the reservoirs. - $(9) \ \ This is the highest running annual average value.$ - (10) The most recent Lead and Copper Rule monitoring was in 2014. 0 of 20 site samples collected at consumer taps had copper concentrations above the AL. - (11) The most recent Lead and Copper Rule monitoring was in 2014. 0 of 20 site samples collected at consumer taps had lead concentrations above the AL. - (12) Bromide was detected in HTWTP effluent only. NASA Ames does not receive HTWTP water. Therefore this does not apply to NASA Ames. - $(13) The \ detected \ chlorate \ in \ the \ treated \ water \ is \ a \ degradation \ product \ of \ sodium \ hypochlorite \ used \ by \ the \ SFPUC \ for \ water \ disinfection.$ KEY: $</\le$ = less than / less than or equal to = Action Level Max = Maximum = Minimum = Not Available = Non-detect = Notification Level = Number of Coliform-Positive Sample = Nephelometric Turbidity Unit = Other Regulatory Level = part per billion ppm = part per million TON = Threshold Odor Number μ S/cm = microSiemens/centimeter Runoff / leaching from natural deposits Runoff / leaching from natural deposits